Computing the Swap Rate

Swap Rate

Suppose that a swap determines the rate at times:

$$
T_{0}, \ldots, T_{N-1}
$$

and pays at times:

$$
T_{1}, \ldots, T_{N}
$$

The fixed side of the swap will pay:

$$
s(t) \sum_{i=0}^{N-1}\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right)
$$

where $s(t)$ is called the swap rate and it moves as a function of t as the yield curve moves.

Swap Rate

How much is the floating side of the swap worth?
If $T_{0}=0$ then the floating side of the swap would be very similar to a floating coupon-paying bond.

The only difference being the principal payment at the end.
Then, the value woud be:

$$
1-P\left(t, T_{N}\right)
$$

However, since T_{0} might not be zero what we need to do is to subtract all the cash-flows between time 0 and T_{0}. But these cash-flows are also very similar to the value of a floating coupon-paying bond. They are worth:

$$
1-P\left(t, T_{0}\right)
$$

Swap Rate

The value of the floating side of the swap is then:

$$
P\left(t, T_{0}\right)-P\left(t, T_{N}\right)
$$

Equating both sides:

$$
s(t) \sum_{i=0}^{N-1}\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right)=P\left(t, T_{0}\right)-P\left(t, T_{N}\right)
$$

which gives that:

$$
s(t)=\frac{P\left(t, T_{0}\right)-P\left(t, T_{N}\right)}{\sum_{i=0}^{N-1}\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right)}
$$

Swap Rate

Another way to generalizing to forward starting swaps:
We know that, for a swap starting immediately, the swap rate satisfies:

$$
s(t) \sum_{i=0}^{N-1}\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right)=1-P\left(t, T_{N}\right)
$$

Let us we now consider a swap starting at a future time T_{0}.

Swap Rate

If market values were not to change between now and time T_{0} the swap rate, at the beginning of the swap would solve:

$$
\hat{s}\left(T_{0}\right) \sum_{i=0}^{N-1}\left(T_{i+1}-T_{i}\right) \hat{P}\left(T_{0}, T_{i+1}-T_{0}\right)=1-\hat{P}\left(T_{0}, T_{N}-T_{0}\right)
$$

where \hat{P} denotes the fact that those are the prices of the zero-coupon bonds IF the zero rates end up being the ones implied by the curve (the forwards) today.

Swap Rate

Multiplying both sides by $P\left(t, T_{0}\right)$ we get:

$$
\begin{gathered}
L H S=\hat{s}\left(T_{0}\right) \sum_{i=0}^{N-1}\left(T_{i+1}-T_{i}\right) \hat{P}\left(T_{0}, T_{i+1}-T_{0}\right) P\left(t, T_{0}\right) \\
R H S=P\left(t, T_{0}\right)-\hat{P}\left(T_{0}, T_{N}-T_{0}\right) P\left(t, T_{0}\right)
\end{gathered}
$$

Now, $\hat{P}\left(T_{0}, T_{i}-T_{0}\right) P\left(t, T_{0}\right)$ is just $P\left(t, T_{i}\right)$ and, therefore:

$$
\hat{s}\left(T_{0}\right) \sum_{i=0}^{N-1}\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right)=P\left(t, T_{0}\right)-P\left(t, T_{N}\right)
$$

Swap Rate

Which indicates that $\hat{s}\left(T_{0}\right)$ has to be equal to $s(t)$.
This says that, in order to compute the swap rate in a forward started swap, we can just compute it as a regular swap assuming that we are now at time T_{0} and that the forwards are the realized zero-coupon rates.

