Stochastic Integration

Remember...

If F is a continuously differentiable function with:

$$
f(s)=\frac{d F(s)}{d s}
$$

then:

$$
\int_{0}^{t} X(s) d F(s)=\int_{0}^{t} X(s) f(s) d s
$$

If F is not differentiable then we can still compute the integral but in Riemann(or Lebesgue)-Stieltjes sense:

$$
\int_{0}^{t} X(s) d F(s)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} X\left(\frac{(k-1) t}{n}\right)\left(F\left(\frac{k t}{n}\right)-F\left(\frac{(k-1) t}{n}\right)\right)
$$

As we mentioned already...

We can't do the same thing if we want to replace F by W.
So we need to construct an integral in a different sense.
A priori is not clear that it can be done..
Idea:

- See if we can make sense of an integration for a small set of integrands.
- Try to reach more integrands by taking some limit.

Simple Processes

A stochastic process $\left\{X_{t}\right\}_{t \in[0, T]}$ is called simple if there exist real numbers:

$$
0=t_{0}<t_{1}<\ldots<t_{p}=T
$$

and bounded random variables $\Phi_{i}: \Omega \longrightarrow \mathbb{R}(i=1, \ldots, p)$ with

$$
\Phi_{0} \quad \mathcal{F}_{0} \text {-measurable and } \Phi_{i} \quad \mathcal{F}_{t_{i}-1} \text {-measurable }
$$

such that:

$$
X_{t}(\omega)=\Phi_{0}(\omega) 1_{0}(t)+\sum_{i=1}^{p} \Phi_{i}(\omega) 1_{\left(t_{i-1}, t_{i}\right]}(t)
$$

for each $\omega \in \Omega$.

Itô Integral for Simple Processes

In this case the integral can be defined in the usual way:

$$
I_{t}(X)=\int_{0}^{t} X_{s} d W_{s}=\sum_{1 \leq i \leq k} \Phi_{i}\left(W_{t_{i}}-W_{t_{i-1}}\right)+\Phi_{k+1}\left(W_{t}-W_{t_{k}}\right)
$$

or, in a more compact notation:

$$
I_{t}(X)=\sum_{1 \leq i \leq p} \Phi_{i}\left(W_{t_{i} \wedge t}-W_{t_{i-1} \wedge t}\right)
$$

where \wedge denotes the minimum of the two values.

Properties of the Integral

If X is a simple process:
(1) $I_{t}(X)$ is a continuous martingale. In particular $E\left(I_{t}(X)\right)=0$ for all $t \in[0, T]$.
(2) $E\left(I_{t}^{2}(X)\right)=E\left(\int_{0}^{t} X_{s}^{2} d s\right)$.

Sketch of Proof: Part 1

We need to prove that:

$$
E\left(I_{t}(X) \mid \mathcal{F}_{s}=I_{s}(X)\right.
$$

but

$$
E\left(I_{t}(X) \mid \mathcal{F}_{s}=E\left(\sum_{1 \leq i \leq k} \Phi_{i}\left(W_{t_{i}}-W_{t_{i-1}}\right)+\Phi_{k+1}\left(W_{t}-W_{t_{k}}\right) \mid \mathcal{F}_{s}\right)\right.
$$

Suppose that i_{0} is the index so that $i_{0}<s \leq i_{0}+1$.
Therefore we can separate the sums into two groups, the terms that involve things prior to s and the term that involve things after s.

The terms that involve things prior to s are all measurable w.r.t \mathcal{F}_{s} (and they amount to $I_{s}(X)$) and for the terms that involve things after s :

Sketch of Proof: Part 1

$$
E\left(\Phi_{i}\left(W_{t_{i}}-W_{t_{i-1}}\right) \mid \mathcal{F}_{s}\right)=0, t_{i-1} \geq s
$$

Why? We can prove it using iterated expectations.
Notice that Φ_{i} is measurable wrt to $\mathcal{F}_{t_{i-1}}$ so, it is known at time t_{i-1}. Therefore, whatever Φ_{i} ends up being at time t_{i-1} it gets multiplied by a normal variable, so the expected value has to be zero.

Sketch of Proof: Part 2

Now, we have to deal with $E\left(I_{t}(X)^{2}\right)$
Distributing the expression for the integral we get a bunch of terms like:

$$
E\left(\Phi_{i} \Phi_{j}\left(W_{t_{i}}-W_{t_{i-1}}\right)\left(W_{t_{j}}-W_{t_{j-1}}\right)\right)
$$

Case $i \neq j$:
If $i>j$ then we can condition wrt \mathcal{F}_{i-1} :

$$
E\left(E\left(\Phi_{i} \Phi_{j}\left(W_{t_{i}}-W_{t_{i-1}}\right)\left(W_{t_{j}}-W_{t_{j-1}}\right)\right) \mid \mathcal{F}_{i-1}\right)
$$

and observe that all the terms but the last one are measurables wrt \mathcal{F}_{i-1} (they are all known before that) so:

$$
E\left(\Phi_{i} \Phi_{j}\left(W_{t_{j}}-W_{t_{j-1}}\right) E\left(\left(W_{t_{i}}-W_{t_{i-1}}\right) \mid \mathcal{F}_{i-1}\right)\right)=0
$$

Case $i=j$:

$$
\begin{gathered}
E\left(\Phi_{i}^{2}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}\right)=E\left(\Phi_{i}^{2} E\left(\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2} \mid \mathcal{F}_{t_{i-1}}\right)\right) \\
=E\left(\Phi_{i}^{2}\left(t_{i}-t_{i-1}\right)\right)
\end{gathered}
$$

So, the cross terms vanish and the $i=j$ terms are the only ones that survive, then:

$$
E\left(I_{t}(X)^{2}\right)=E\left(\sum_{i=1}^{k} \Phi_{i}^{2}\left(t_{i}-t_{i-1}\right)\right)=E\left(\int_{0}^{t} X_{s}^{2} d s\right)
$$

Measurability

A stochastic process X_{t} is measurable if the mapping:

$$
\begin{gathered}
{[0, \infty) \longrightarrow \mathbb{R}^{n}} \\
(s, \omega) \longrightarrow X_{s}(\omega)
\end{gathered}
$$

is measurable in the product space.

We will need a related (but different) notion: A stochastic process X_{t} is progressively measurable if, for every t, the mapping:

$$
\begin{gathered}
{[0, t) \longrightarrow \mathbb{R}^{n}} \\
(s, \omega) \longrightarrow X_{s}(\omega)
\end{gathered}
$$

is measurable (w.r.t the information up to time t).

Approximation

Theorem: IF X_{t} is a progressively measurable process so that $E\left(\int_{0}^{T} X_{t}^{2} d t\right)<\infty$ then X_{t} can b approximated by simple processes $X^{(n)}$ so that:

$$
\lim _{n \rightarrow \infty} E\left(\int_{0}^{T}\left(X_{s}-X_{s}^{(n)}\right)^{2} d s=0\right.
$$

Construction of the Integral

How do we define an integral for general integrands?
If we call $L^{2}[0, T]$ the space of progressively measurable processes with $E\left(\int_{0}^{T} X_{t}^{2} d t\right)<\infty$ then there exists a unique mapping J from $L^{2}[0, T]$ into the space of continuous martingales on $[0, T]$ so that:
(1) IF X is a simple process then the mapping J coincides with the integral we defined before (with probability 1).
(2) $E\left(J_{t}(X)^{2}\right)=E\left(\int_{0}^{t} X_{s}^{2} d s\right)$.

This equality is called the Itô isometry.
We define J as the stochastic integral of X w.r.t. W and denote:

$$
\int_{0}^{t} X_{s} d W_{s}=J_{t}(X)
$$

Suppose that W_{t} is a Brownian motion and X_{t} :

$$
X_{t}=X_{0}+\int_{0}^{t} K_{s} d s+\int_{0}^{t} H_{s} d W_{s}
$$

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be twice continuously differentiable. Then:

$$
\begin{gathered}
f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} f^{\prime}\left(X_{s}\right) d X_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2} d s \\
=f\left(X_{0}\right)+\int_{0}^{t}\left(f^{\prime}\left(X_{s}\right) K_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2}\right) d s \\
+\int_{0}^{t} f^{\prime}\left(X_{s}\right) H_{s} d W_{s}
\end{gathered}
$$

Let us consider a partition of $[0, t]$. By Taylor:

$$
\begin{aligned}
f\left(X_{t}\right) & -f\left(X_{0}\right)=\sum_{k=1}^{m}\left(f\left(X_{t_{k}}\right)-f\left(X_{t_{k-1}}\right)\right) \\
& =\sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right) \\
& +\frac{1}{2} \sum_{k=1}^{m} f^{\prime \prime}\left(\eta_{k}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right)^{2}
\end{aligned}
$$

where $\eta_{k}(\omega)$ is an intermediate point.

$$
\begin{gathered}
\sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right)=\sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right)\left(B_{t_{k}}-B_{t_{k-1}}\right) \\
+\sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}-1}\right)\left(M_{t_{k}}-M_{t_{k-1}}\right)
\end{gathered}
$$

where:

$$
B_{t}=\int_{0}^{t} K_{s} d s \text { and } M_{t}=\int_{0}^{t} H_{s} d W_{s}
$$

Itô Formula. Idea of proof

In regular calculus the term:

$$
\frac{1}{2} \sum_{k=1}^{m} f^{\prime \prime}\left(\eta_{k}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right)^{2}
$$

goes to zero as the norm of the partition goes to 0 since $f^{\prime \prime}$ is bounded (by Q) and then we can do:

$$
\leq Q\|\Pi\| \frac{1}{2} \sum_{k=1}^{m}\left(x_{k}-x_{k-1}\right) \longrightarrow 0
$$

Itô Formula. Idea of proof

But in this case that is not true. We can replace X by its two pieces again

$$
\begin{gathered}
\frac{1}{2} \sum_{k=1}^{m} f^{\prime \prime}\left(\eta_{k}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right)^{2} \\
=\frac{1}{2} \sum_{k=1}^{m} f^{\prime \prime}\left(\eta_{k}\right)\left(B_{t_{k}}+M_{t_{k}}-B_{t_{k-1}}-M_{t_{k-1}}\right)^{2}
\end{gathered}
$$

Developing the square we get 3 terms:
(1) $\left(B_{t_{k}}-B_{t_{k-1}}\right)^{2}$, which is a "calculus" term and so it goes to 0 .
(2) $\left(B_{t_{k}}-B_{t_{k-1}}\right)\left(M_{t_{k}}-M_{t_{k-1}}\right)$, which can also be bounded using the norm of the partition.
(3) $\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}$, which does not go to zero.

Itô Formula. Idea of proof

Proving that

$$
\sum_{k=1}^{m} f^{\prime \prime}\left(\eta_{k}\right)\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \longrightarrow \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2} d s
$$

is somewhat technical but intuitively clear since

$$
\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \sim H\left(t_{k}\right)^{2}\left(t_{k}-t_{k-1}\right)
$$

