Solving Black-Scholes' PDE

Black and Scholes equation:

$$
\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}+r S \frac{\partial C}{\partial S}-r C=0
$$

To solve it we need final conditions. For a call:

$$
C(S, T)=\max (S-K, 0)
$$

First, let us introduce an integrating factor to get rid of the $r C$ term.

$$
e^{-r t}\left(\frac{\partial C}{\partial t}-r C\right)=\frac{\partial\left(e^{-r t} C\right)}{\partial t}
$$

Then, by calling $u=e^{-r t} C$ we get:

$$
\frac{\partial u}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} u}{\partial S^{2}}+r S \frac{\partial u}{\partial S}=0
$$

Consider the "log-price" variable $x=\log (S)$ and let us reverse it into a forward equation by doing $s=T-t$.

$$
\begin{gathered}
\frac{\partial u}{\partial t}=-\frac{\partial u}{\partial s} \\
\frac{\partial u}{\partial S}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial S}=\frac{\partial u}{\partial x} \frac{1}{S} \\
\frac{\partial^{2} u}{\partial S^{2}}=\frac{\partial}{\partial S}\left(\frac{\partial u}{\partial x} \frac{1}{S}\right)=-\frac{1}{S^{2}} \frac{\partial u}{\partial x}+\frac{1}{S^{2}} \frac{\partial^{2} u}{\partial x^{2}}
\end{gathered}
$$

Replacing:

$$
0=-\frac{\partial u}{\partial s}+\left(r-\frac{1}{2} \sigma^{2}\right) \frac{\partial u}{\partial x}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

We can now do another transform to kill the first order term in x.
Let us try the integrating factor trick again:

$$
u(x, s)=e^{\alpha x+\beta s} v(x, s)
$$

Then:

$$
\begin{gathered}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial x} e^{\alpha x+\beta s}+\alpha e^{\alpha x+\beta s} v(x, s) \\
\frac{\partial u}{\partial s}=\frac{\partial v}{\partial s} e^{\alpha x+\beta s}+\beta e^{\alpha x+\beta s} v(x, s) \\
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x^{2}} e^{\alpha x+\beta s}+\alpha^{2} e^{\alpha x+\beta s} v(x, s)+2 \alpha \frac{\partial v}{\partial x} e^{\alpha x+\beta s}
\end{gathered}
$$

Now we can choose α and β so that we get rid of the first derivative.

Also, we can get rid of the $v(x, s)$ terms.
So, in the end we need to solve:

$$
\frac{\partial v}{\partial s}=\frac{1}{2} \sigma^{2} \frac{\partial^{2} v}{\partial x^{2}}
$$

Which is the "traditional" heat equation.
Given an initial condition $v_{0}(x)$, the solution is obtained by convoluting v_{0} with the gaussian kernel:

$$
\Phi(x, s)=\frac{1}{\sqrt{4 \pi s k}} e^{-\frac{x^{2}}{4 k s}}
$$

where k in this case is $\frac{1}{2} \sigma^{2}$.
Let us see why:

To solve it we are going to use the Fourier Transform:

$$
\hat{u}(\xi)=\int_{-\infty}^{\infty} u(x) e^{-i x \xi} d x
$$

So, we can compute:

$$
\frac{\widehat{\partial v}}{\partial s}(\xi, s)=\frac{1}{2} \sigma^{2} \frac{\widehat{\partial^{2} v}}{\partial x^{2}}(\xi, s)
$$

So, we need to be able to compute the Fourier Transform of the partial derivatives of the function v.
(1)

$$
\begin{aligned}
\frac{\widehat{\partial v}}{\partial s}(\xi, s) & =\int_{-\infty}^{\infty} \frac{\partial v(x, s)}{\partial s} e^{-i x \xi} d x=\int_{-\infty}^{\infty} \frac{\partial\left(v(x, s) e^{-i x \xi}\right)}{\partial s} d x \\
& =\frac{\partial}{\partial s} \int_{-\infty}^{\infty} v(x, s) e^{-i x \xi} d x=\frac{\partial}{\partial s} \hat{v}(\xi, s)
\end{aligned}
$$

(2)

$$
\begin{gathered}
\widehat{\frac{\partial^{2} v}{\partial x^{2}}}(\xi, s)=\int_{-\infty}^{\infty} \frac{\partial^{2} v(x, s)}{\partial^{2} x} e^{-i x \xi} d x \\
=-\int_{-\infty}^{\infty} \frac{\partial v(x, s)}{\partial x}(-i \xi) e^{-i x \xi} d x \\
=\int_{-\infty}^{\infty} v(x, s)(-i \xi)(-i \xi) e^{-i x \xi} d x \\
=(-i \xi)^{2} \int_{-\infty}^{\infty} v(x, s) e^{-i x \xi} d x=(i \xi)^{2} \hat{v}(\xi, s)
\end{gathered}
$$

Therefore, going back to the equation:

$$
\frac{\widehat{\partial v}}{\partial s}(\xi, s)=\frac{1}{2} \sigma^{2} \frac{\widehat{\partial^{2} v}}{\partial x^{2}}(\xi, s)
$$

becomes:

$$
\frac{\partial}{\partial s} \hat{v}(\xi, s)=\frac{1}{2} \sigma^{2}(i \xi)^{2} \hat{v}(\xi, s)
$$

or:

$$
\frac{\partial}{\partial s} \hat{v}(\xi, s)+\frac{1}{2} \sigma^{2} \xi^{2} \hat{v}(\xi, s)=0
$$

So, we got rid of the derivative with respect to x, we can use the "integrating factor trick" again:

$$
\left(\frac{\partial}{\partial s} \hat{v}(\xi, s)+\frac{1}{2} \sigma^{2} \xi^{2} \hat{v}(\xi, s)\right) e^{\frac{1}{2} \sigma^{2} \xi^{2} s}=0
$$

or:

$$
\frac{\partial}{\partial s}\left(\hat{v}(\xi, s) e^{\frac{1}{2} \sigma^{2} \xi^{2} s}\right)=0
$$

So, the function in the parenthesis depends only on ξ :

$$
\hat{v}(\xi, s) e^{\frac{1}{2} \sigma^{2} \xi^{2} s}=f(\xi)
$$

or:

$$
\hat{v}(\xi, s)=f(\xi) e^{-\frac{1}{2} \sigma^{2} \xi^{2} s}
$$

We now use the initial condition:

$$
\hat{v}(\xi, 0)=\hat{v}_{0}(\xi)=f(\xi)
$$

Then:

$$
\hat{v}(\xi, s)=\hat{v}_{0}(\xi) e^{-\frac{1}{2} \sigma^{2} \xi^{2} s}
$$

To find the solution we now need to take the inverse of the Fourier Transform.

2 Facts about the Fourier Transform:
(1) The Inverse Fourier Transform of a function $\hat{g}(\xi)$ is given by:

$$
g(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{g}(\xi) e^{i x \xi} d \xi
$$

(2) Consider two functions $f(x)$ and $g(x)$ we can define its "convolution":

$$
(f * g)(x)=\int f(y) g(x-y) d y
$$

Why would we want to do this?
For example, in probability, if we have two independent random variables X and Y with densities f_{X} and f_{Y}, the density of the sum of the two is $f_{X} * f_{Y}$.

Taking the Fourier Transform of the convolution gives:

$$
\widehat{(f * g)}(\xi)=\hat{f}(\xi) \hat{g}(\xi)
$$

In our case we have:

$$
\hat{v}(\xi, s)=\hat{v}_{0}(\xi) e^{-\frac{1}{2} \sigma^{2} \xi^{2} s}
$$

So, applying the convolution result to:

$$
\hat{f}(\xi)=\hat{v}_{0}(\xi)
$$

and

$$
\hat{g}(\xi)=e^{-\frac{1}{2} \sigma^{2} \xi^{2} s}
$$

we would find that:

$$
v(x, s)=(f * g)(x, s)
$$

We know that the inverse Fourier Transform of $\hat{v_{0}}(\xi)$ is $v_{0}(x)$.
But, what is the inverse Fourier Transform of $e^{-\frac{1}{2} \sigma^{2} \xi^{2} s}$?
We have to compute it

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\frac{1}{2} \sigma^{2} \xi^{2} s} e^{i x \xi} d \xi
$$

Writing the exponent as:

$$
-\left(\sqrt{\frac{1}{2} \sigma^{2} s} \xi-i \frac{x}{\sqrt{2 \sigma^{2} s}}\right)^{2}-\frac{x^{2}}{2 \sigma^{2} s}
$$

The first term is dealt with by comparing it to a normal distribution, the second term comes out from the integral.

The result is:

$$
\frac{1}{\sqrt{2 \pi \sigma^{2} s}} e^{-\frac{x^{2}}{2 \sigma^{2} s}}
$$

