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Black and Scholes equation:
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To solve it we need final conditions. For a call:

C (S ,T ) = max(S � K , 0)
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First, let us introduce an integrating factor to get rid of the rC

term.
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Then, by calling u = e

�rt

C we get:
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Consider the ”log-price” variable x = log(S) and let us reverse it

into a forward equation by doing s = T � t.
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Replacing:
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We can now do another transform to kill the first order term in x .

Let us try the integrating factor trick again:

u(x , s) = e

↵x+�s

v(x , s)

Then:
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Now we can choose ↵ and � so that we get rid of the first

derivative.

Also, we can get rid of the v(x , s) terms.

So, in the end we need to solve:
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Which is the ”traditional” heat equation.

Given an initial condition v0(x), the solution is obtained by

convoluting v0 with the gaussian kernel:
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where k in this case is

1
2�2

.

Let us see why:
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To solve it we are going to use the Fourier Transform:

û(⇠) =

Z 1

�1
u(x)e
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So, we can compute:
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So, we need to be able to compute the Fourier Transform of the

partial derivatives of the function v .
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Therefore, going back to the equation:
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So, we got rid of the derivative with respect to x , we can use the

”integrating factor trick” again:
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or:
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So, the function in the parenthesis depends only on ⇠:
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We now use the initial condition:

v̂(⇠, 0) = v̂0(⇠) = f (⇠)

Then:
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To find the solution we now need to take the inverse of the Fourier

Transform.

2 Facts about the Fourier Transform:
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The Inverse Fourier Transform of a function ĝ(⇠) is given by:
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Consider two functions f (x) and g(x) we can define its

”convolution”:

(f ⇤ g)(x) =
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Why would we want to do this?

For example, in probability, if we have two independent

random variables X and Y with densities f
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Taking the Fourier Transform of the convolution gives:

\
(f ⇤ g)(⇠) =
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In our case we have:
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we would find that:

v(x , s) = (f ⇤ g)(x , s)
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We know that the inverse Fourier Transform of v̂0(⇠) is v0(x).

But, what is the inverse Fourier Transform of e
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s

?

We have to compute it
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The first term is dealt with by comparing it to a normal

distribution, the second term comes out from the integral.

The result is:
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