
Introduction to Monte Carlo

Introduction to Monte Carlo



Monte Carlo

Suppose that we want to estimate
∫ 1
0 f (x)dx where f (x) is a

continuous function on [0, 1]

Let X be a random variable uniformly distributed on [0, 1] and let
us draw x1, .x2, ...... from X .

Can we approximate
∫ 1
0 f (x)dx by using x1, x2, ....?

∫ 1

0
f (x)dx =

∫ 1

0
f (x)g(x)dx

where g(x) is the uniform density on [0, 1].
And, therefore ∫ 1

0
f (x)dx = E (f (X ))
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Monte Carlo

How can we estimate E (f (X ))? Exactly by drawing x1, .x2, .... and
averaging the f (xi )s.

So, this gives us a probabilistic method to approximate integrals.

How fast does it converge?

The variance of 1
n

∑n
1 f (xi ) is

σ2
f
n so the standard deviation is σf√

n
.

So, if we want to cut the error by two we need to increase n by a
factor of 4.

If we were to use a numerical scheme, like a trapezoidal rule the
convergence would be much faster.

However, convergence in numerical schemes slows down in more
dimensions whereas in Monte Carlo it stays at the

√
n rate.
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Monte Carlo

When studying binomial trees we saw that the price of a call
option can be found by taking an expected value:

C (S0,K ,T ) = e−rT Ê (max(ST − K , 0))

where Ê represents the fact that we are taking probabilities with
respect to the q′s instead of the p′s.

In that equation the random variable is ST . In the next couple of
weeks we will justify the fact that, under some conditions,

log(ST ) ∼ N(log(S0) + (r − σ2

2
)T , σ

√
T )

Introduction to Monte Carlo
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Therefore:

C (S0,K ,T ) =

∫ ∞

0
max(s − K , 0)fST

(s)ds

where fST
is the density of the random variable ST .

So, as before, we can get a sample from ST (s1, s2, ..., sn) and
approximate:

C (S0,K ,T ) ∼= e−rT (
1

n

n∑
i=1

max(si − K , 0))
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To do this we need to be able to sample from a Normal variable.
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