Math 5022
Midterm
Name:

1) Consider a portfolio containing four stocks S_{1}, S_{2}, S_{3} and S_{4}. Their (annualized) volatilities are $.8, .25$, 45 and .15 respectively. Suppose, also, that the correlations are $\rho_{1,2}=.6, \rho_{3,4}=.4, \rho_{1,3}=\rho_{1,4}=\rho_{2,3}=\rho_{2,4}=0$.
a) Find the eigenvectors and eigenvalues of the correlation matrix.
b) If the portfolio consists of 3 MM worth of S_{1} and 1 MM of (each) S_{2}, S_{3} and S_{4}. What is the 1-day 99% VAR?
2) Suppose that X is a continuous random variable that follows an exponential distribution with parameter $\lambda>0$. This means that the density of X is:

$$
f(x)=\lambda e^{-\lambda x}, x \geq 0
$$

a) Compute $E(X)$ and $V(X)$.
b) If x_{1}, \ldots, x_{n} is a sample corresponding to one such X find the maximum likelihood estimator of the parameter λ.
3) A certain time series is modeled with the $\mathrm{AR}(1)$ process:

$$
x_{t}=8.1+.8 x_{t-1}+\epsilon_{t}
$$

where ϵ_{t} is a white noise with $E\left(\epsilon_{t}^{2}\right)=.5$.
a) Is x_{t} a stationary process? Why? Prove it.
b) What are the mean and the variance of x_{100} ?
c) Consider another $\mathrm{AR}(1)$ process z_{t} which follows a similar equation:

$$
z_{t}=8.1+z_{t-1}+\epsilon_{t}
$$

How does your answer to question (a) change? Justify.
4) Suppose that you need to price a call on a spread of two stocks S^{1} and S^{2}. You know that:
$S_{0}^{1}=100, S_{0}^{2}=90, r=0, q^{1}=0, q^{2}=0, T=4$ months $. \sigma^{1}=.2, \sigma^{2}=.3, K=10$
In addition, you know that the correlation between the returns of S^{1} and the returns of S^{2} is .8 .

You decide to price the option using Monte Carlo simulation with $\Delta t=$ 1 month and then, to generate the first path, you draw 8 (normal) numbers from a random number generator $.01,1.15,-.2, .51,-.6, .04,-1.01, .43$.
a) How do you generate a path of the spread $S^{1}-S^{2}$ using those 10 numbers? (S^{2} denotes the second stock, it does not mean a square).
b) What will the payoff be for that path?
c) Is $S_{T}^{1}-S_{T}^{2}$ a lognormal variable? Explain.
5) As we know the Black-Scholes formula for a call option is given by: $S e^{-q T} N\left(d_{1}\right)-K e^{-r T} N\left(d_{2}\right)$ where $d_{1}=\frac{\log (S / K)+\left(r-q+\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}$ and $d_{2}=d_{1}-\sigma \sqrt{T}$. Using this formula and put-call parity deduce the Black-Scholes formula for a put on S with the same strike K.

