FM 5021

Hw6

1) Suppose that you are considering buying a 1-year $\$ 100$ call (this means $K=100$) on S which is trading at $\$ 100$. If the interest rate for a year is $r=1 \%$
a) Find a lower bound for the price of the call.
b) If, in addition, you observe that the put with the same strike is worth $\$ 1$ how much do you expect to pay for the call?
2) We have proved the put-call parity relationship for European options (on non dividend paying stocks) in class. For American options the relationship is not valid. What holds is:

$$
S-K \leq C-P \leq S-K e^{-r T}
$$

Hint: For the first inequality analyze the following portfolios:
Portfolio A: $C+K(=c+K)$.
Portfolio B: $P+S_{0}$.
For the second one start with put-cal parity for Europeans and use that $P>p$ and $C=c$.
3) By the way, we have also proved in class that American calls (if S does not pay dividends) should never be exercised early. Try working out the details yourself.
4) Suppose that c_{1}, c_{2} and c_{3} are the prices of European call options with strike K_{1}, K_{2} and K_{3} so that $K_{1}<K_{2}<K_{3}$ and $K_{3}-K_{2}=K_{2}-K_{1}$. Prove that:

$$
c_{2} \leq .5\left(c_{1}+c_{3}\right)
$$

5) Use put-call parity to show that the cost of a butterfly spread (we described it in class) created from European calls is the same as the price of the same butterfly spread created from European puts.
6) Generalize the lower bounds for European calls and puts prices on stocks that pay no dividends to the case in which the stock pays a continuous dividend yield.
