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Random Processes

In probability theory we study spaces (Ω,F ,P) where Ω is the
space, F are all the sets to which we can measure its probability
and P is the probability.

Example: Toss a die twice.

Ω = {(1, 1), (1, 2), ..., (6, 6)}

F = All the subsets of Ω.

P assigns the number 1
36 to each pair.

We can do things like computing the probability of getting a 1 in
the first trial or computing the probability of the sum of the two
being larger than 3.

Each possible result of the experiment is denoted with the letter ω.
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Random Processes

Now, we can also define a function

X : Ω −→ R

For example X =”first coordinate” or X =”sum of the two
numbers”.

X induces a probability on the real line by doing:

P(A) = P(X ∈ A)

P is what is usually called the distribution of X .

From X we can measure expected value (E (X )), variance
(Var(X )), standard deviation, etc.

The numeric result of an experiment can be denoted by X (ω).
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Random Processes

Now, suppose that you were to repeat the experiment every day.

Instead of X we would have Xt or X (t).

After 1 year of doing so we would have created a whole function

If we were to do it again we would obtain:

X (t, ω2)

X (t) is a stochastic process.

The result of an experiment X (t, ω) is a ”random function”.
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Random Processes

From this X we can measure the expected value at a given time

E (X (t0))

the expected value of the difference at two different times

E (X (t1)− X (t0))

the variance at a given time

Var(X (t0))

etc.
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Random Processes

In many examples Ω is not explicitly known

What is Ω in finance?
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Brownian Motion

B(t) is a Brownian Motion if:

1) B(t) is cont in t.

2) B(t + h)− B(t) ∼ N(0,
√

(h)).

3) Indep. increments:

B(tn)− B(tn−1), ...,B(t1)− B(t0) are independent.

Notice that, in particular,

Var (B(tj)− B(tj−1)) = tj − tj−1.
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Brownian Motion

Now, consider an interval I = [0,T ] and consider a partition of I .

Π = t0, t1, ..., tn with 0 = t0 < t1 < ... < tn = T

The mesh of the partition is defined as

‖Π‖ = maxj |tj − tj−1|

Given a function f we define the first variation and the quadratic
variation as:

FV (f )(T ) = lim‖Π‖−>0

j=n∑
j=0

|f (tj)− f (tj−1)|

< f > (T ) = lim‖Π‖−>0

j=n∑
j=0

|f (tj)− f (tj−1)|2
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Brownian Motion

If f is differentiable:

f (tj)− f (tj−1) = f ′(t∗j )(tj − tj−1)

and therefore

FV (f )(T ) =

∫ T

O
|f ′(t)|dt

and

< f > (T ) = lim‖Π‖−>0

j=n∑
j=0

|f ′(t∗j )|2|(tj − tj−1)|2
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Brownian Motion

≤ lim‖Π‖−>0‖Π‖
j=n∑
j=0

|f ′(t∗j )|2|(tj − tj−1)| = 0

Fact:
< B > (t) = T

(This would say, in particular, that B(t) is no differentiable)

Define Dk = B(tk+1)− B(tk)

The quadratic variation is the limit of expressions like:

QΠ =
n−1∑
k=0

D2
k
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Brownian Motion

We want to prove that

lim‖Π−>0‖(QΠ − T ) = 0

Consider

QΠ − T =
n−1∑
k=0

D2
k − (tk+1 − tk)

It is easy to see that the expected value is 0.
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Brownian Motion

Because of independent increments

Var(QΠ−T ) =
n−1∑
k=0

Var(D2
k−(tk+1−tk)) =

n−1∑
k=0

E(D2
k−(tk+1−tk))2

=
n−1∑
k=0

E(D4
k − 2D2

k (tk+1 − tk) + (tk+1 − tk)2)

=
n−1∑
k=0

(3(tk+1 − tk)2 − 2(tk+1 − tk)2 + (tk+1 − tk)2)

=
n−1∑
k=0

2(tk+1 − tk)2 ≤ 2‖Π‖T − > 0

Which is what we wanted
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Brownian Motion

Now, notice that

E ((B(tk+1)− B(tk))2 − (tk+1 − tk)) = 0

Var((B(tk+1)− B(tk))2 − (tk+1 − tk)) = 2(tk+1 − tk)2

(To see this consider X ∼ N(0, σ).

Then E ((X 2 − σ2)2) = E (X 4)− σ4, but E (X 4) = 3σ4)
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Brownian Motion

Or, which is the same:

E ((B(tk+1)− B(tk))2) = (tk+1 − tk)

E (((B(tk+1)− B(tk))2 − (tk+1 − tk))2) = 2(tk+1 − tk)2

(To see this consider X ∼ N(0, σ).

Then E ((X 2 − σ2)2) = E (X 4)− σ4, but E (X 4) = 3σ4)
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Brownian Motion

Therefore, since (tk+1 − tk)2 is very small when (tk+1 − tk) is
small :

(B(tk+1)− B(tk))2 ∼ (tk+1 − tk)

In differential notation:

dB(t)dB(t) = dt
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Remind: Riemann-Stieltjes

In calculus we study Riemann integrals:∫ b

a
f (x)dx = lim

∑
f (xi )(xi − xi−1)

where the xi s form a partition of the interval [a, b] and the limit is
taken as the norm of the partition goes to zero.
In that sum (xi − xi−1) represent the weight (or measure) we give
to the interval [xi , xi−1].
There is a generalization of that concept called Riemann-Stieltjes
integral in which the weight assigned to each interval is given by a
transformation g(x).∫ b

a
f (x)dg(x) = lim

∑
f (xi )(g(xi )− g(xi−1))
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Remind: Riemann-Stieltjes

For us to be able to do that g(x) has to satisfy some conditions.

For example if g is an increasing function we can do it.

In that case g represents a ”deformation” of the original
homogeneous measure.

A general class of functions for which this can be done is formed
by the functions that have finite first variation.
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Back to Brownian Motion

Given a function f how do we compute df (B(t))?
In calculus we do

d

dt
f (B(t)) = f ′(B(t))B ′(t)dt

In differential notation

df (B(t)) = f ′(B(t))B ′(t)dt = f ′(B(t))dB(t)

But now B(t) is not differentiable, in particular B(t + h)− B(t) is
”too big”. However, we know that (B(t + h)− B(t))2 ∼ h so we
try adding an extra term to the Taylor expansion:
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Brownian Motion

So, let us think about the chain rule in both cases:

Let us take a smooth function f which we are going to compose
with:

1 a function g also smooth.

2 a brownain motion B.

f (g(tk))− f (g(tk−1)) = f ′(ξ)(g(tk)− g(tk−1))

where ξ is between g(tk) and g(tk−1). Let us now divide both
sides by (tk − tk−1) and let tk and tk−1 be very close to each other
to obtain:

(f ◦ g)′(tk) = f ′(g(tk))g ′(tk)
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Brownian Motion

If, instead of developing up to order 1 we had developed up to
order 2:

f (g(tk))− f (g(tk−1)) = f ′(g(tk−1))(g(tk)− g(tk−1))

+
1

2
f ′′(ξ)(g(tk)− g(tk−1))2

Again, dividing both sides by (tk − tk−1) and letting tk and tk−1

we see that the second term vanishes (why?). So, the result is the
same.
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Brownian Motion

Now, what happens if instead of g we have B?

Suppose that we stop at order 1:

f (B(tk))− f (B(tk−1)) = f ′(ξ)(B(tk)− B(tk−1))

We can’t divide by (tk − tk−1) as before (
B(tk )−B(tk−1)

(tk−tk−1) blows up in

the limit).
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Brownian Motion

If we try going up to order 2:

f (B(tk))− f (B(tk−1)) = f ′(B(tk−1))(B(tk)− B(tk−1))

+
1

2
f ′′(ξ)(B(tk)− B(tk−1))2

We still can’t divide. But, what we can do is to make tk and tk+1

be very close, sum over al the t ′ks and see if the two terms on the
right make sense. It turns out that this can be done (we will do
this soon).
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Brownian Motion

So, in the end:

df (B(t)) = f ′(B(t))dB(t) +
1

2
f ′′(B(t))(dB(t))2

= f ′(B(t))dB(t) +
1

2
f ′′(B(t))dt

In integral form

f (B(T ))− f (B(0)) =

∫ T

0
f ′(B(t))dB(t)

+
1

2

∫ T

0
f ′′(B(t))dt
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Brownian Motion

Example: f (x) = 1
2x

2

f ′(x) = x , f ′′(x) = 1

B2(T )

2
=

∫ T

0
B(t)dB(t) +

1

2
T

We should compare this to∫ T

0
xdx =

T 2

2

...so, in stochastic calculus, we have an extra term
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Brownian Motion

Remark:

When one defines the stochastic integral one finds that

E (

∫ T

0
B(s)dB(s)) = 0

One the other hand we know that E (B
2(T )
2 ) = T

2 .

So...if we did not have the extra term we would be in trouble.
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Itô

Let us assume that the return of stocks is governed by:

St+1 − St
St

= µt + φ where φ ∼ N(0, σ)

In continuous time:

dS

S
= µdt + σdB.

How do I solve that? (how do I find St?)
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Itô

If we were talking regular calculus the solution would be log(S).
So, let’s try the same solution:
Using Taylor:

log(St) = log(S0) +
1

S0
dS0 −

1

2

1

S2
0

(dS0)2

I can replace dS0 = S0µdt + S0σdB.

Also, (dS0)2 = S2
0µ

2dt2 + S2
0σ

2dB2 + 2µσS2
0dtdB

However, I know that dB2 ∼ dt.

So, the term containing dB2 is the biggest of them three.
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Itô

If I now discard all the terms smaller than dt we end up with:

log(St) = log(S0) +
1

S0
(S0µdt + S0σdB)− 1

2
S2

0σ
2dt

or

log(St) = log(S0) + (µdt + σdB)− 1

2
σ2dt

St = S0e
(µ− 1

2
σ2)t+σB(t)
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Itô

In general, from time t to time t + h the solution evolves as:

St+h = Ste
(µ− 1

2
σ2)h+σ(B(t+h)−B(t))

But we know that B(t + h)− B(t) ∼ N(0,
√
h). The we can

rewrite as:

St+h = Ste
(µ− 1

2
σ2)h+σ

√
hX where X ∼ N(0, 1)
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