Valuation of bonds paying floating coupons

Floating coupon paying bonds

How much would you pay for a bond expiring in three months and paying 100 plus a coupon equal to todays three-month rate??

$$
B=\frac{100+c 100}{(1+r / 4)}
$$

what is the relationship between r and c ?
$c=r / 4$, therefore $B=100$.

Floating coupon paying bonds

What about a bond that expiries in six months and at the beginning of each three-month period it sets its coupon according to the 3-month rate?
I know the first coupon $c_{1} 100$ just as before.
However, I do not know what the second coupon will be. Still, I can lock in $f\left(0, t_{1}, t_{2}\right)$ by entering into an FRA.
I claim that the price of the bond should be

$$
\begin{gathered}
B=\frac{100 r / 4}{(1+r / 4)}+\frac{f\left(0, t_{1}, t_{2}\right) 100+100}{(1+r / 4)\left(1+f\left(0, t_{1}, t_{2}\right)\right)} \\
B=\frac{100\left(1+f\left(0, t_{1}, t_{2}\right)\right) r / 4+100\left(1+f\left(0, t_{1}, t_{2}\right)\right)}{(1+r / 4)\left(1+f\left(0, t_{1}, t_{2}\right)\right)}=100
\end{gathered}
$$

Floating coupon paying bonds

Why should the claim be true?

We can hedge every cash-flow today, locking-in the forward rates indicated by the yield curve today.

In other words, for the price of 0 we can make the bond into a bond paying the implied forward rates today at each coupon day.

Floating coupon paying bonds

How do I prove the claim?

If $B>100$:

1) Sell the bond, invest the proceeds for six months at $R(0, .5)$ and lock-in $f(0, .25, .5)$ for the second three months for a notional of $100 R(0,25)$. Also buy an FRA for $\$ 100$ for the interval [.25, .5], $R_{K}=f(0, .25, .5)$.
2) In three months borrow $100 R(0.25)$ for three months at $f(0, .25, .5)$ and pay the coupon.
3) In six months pay the coupon $100 R(.25, .5)$ and get from the FRA $100(R(.25, .5)-f(0, .25, .5))$, also pay $\$ 100$ and pay the loan $100 R(0, .25)(1+f(0, .25, .5))$

Floating coupon paying bonds

How do I prove the claim?
4) In total we payed
$100+100 R(0, .25)(1+f(0, .25, .5))+100 f(0, .25, .5)=$ $100(1+R(0, .25)(1+f(0, .25, .5))$
5) Form investing B we get $B(1+R(0, .25))(1+f(0, .25, .5))$.
6) Gain: $(B-100)(1+R(0, .25))(1+f(0, .25, .5))$ which is exactly $B-100$ at time 0 .

Floating coupon paying bonds

What is the price on any other date? (not a coupon-paying date).
Suppose that the bond pays coupons semianually and it has paid a coupon 2 months ago. Then, 32 months ago, it has also fixed the coupon for the next period.

So right now we know what the coupon will be in 4 months. Let us assume that the coupon paid in 4 months will be 8% ($\$ 4$).

In 4 months, the bond will pay $\$ 4$ and right after that the bond will be worth $\$ 100$.

So the price of the bond right before the payment of the coupon will be $\$ 104$.

So, the price today has to be $104 e^{-R(0,4 / 12) * 4 / 12}$, where $R(0,4 / 12)$ is the 4 -month Libor today.

