
## Some Facts about the Brownian Motion

Some Facts about the Brownian Motion

In other words,  $\mathbb{E}(X_t | \mathcal{F}_s) = X_s, s \leq t$ .

Sometimes you will see written  $\mathbb{E}(X_t|X_s)$  instead of  $\mathbb{E}(X_t|\mathcal{F}_s)$ .



In other words,  $\mathbb{E}(X_t | \mathcal{F}_s) = X_s, s \leq t$ .

Sometimes you will see written  $\mathbb{E}(X_t|X_s)$  instead of  $\mathbb{E}(X_t|\mathcal{F}_s)$ . Let  $W_t$  be a Brownian Motion,

•  $W_t$  is a martingale.

In other words,  $\mathbb{E}(X_t | \mathcal{F}_s) = X_s, s \leq t$ .

Sometimes you will see written  $\mathbb{E}(X_t|X_s)$  instead of  $\mathbb{E}(X_t|\mathcal{F}_s)$ . Let  $W_t$  be a Brownian Motion,

•  $W_t$  is a martingale. Notice that, as  $W_0 = 0$  this implies that for any  $t \ge 0$ ,  $\mathbb{E}(W_t) = 0$ .

In other words,  $\mathbb{E}(X_t | \mathcal{F}_s) = X_s, s \leq t$ .

Sometimes you will see written  $\mathbb{E}(X_t|X_s)$  instead of  $\mathbb{E}(X_t|\mathcal{F}_s)$ . Let  $W_t$  be a Brownian Motion,

•  $W_t$  is a martingale. Notice that, as  $W_0 = 0$  this implies that for any  $t \ge 0$ ,  $\mathbb{E}(W_t) = 0$ .

Now  $W_t^2 \ge 0$  and sometimes is strictly bigger, therefore, it can't be a martingale.

In other words,  $\mathbb{E}(X_t | \mathcal{F}_s) = X_s, s \leq t$ .

Sometimes you will see written  $\mathbb{E}(X_t|X_s)$  instead of  $\mathbb{E}(X_t|\mathcal{F}_s)$ . Let  $W_t$  be a Brownian Motion,

•  $W_t$  is a martingale. Notice that, as  $W_0 = 0$  this implies that for any  $t \ge 0$ ,  $\mathbb{E}(W_t) = 0$ .

Now  $W_t^2 \ge 0$  and sometimes is strictly bigger, therefore, it can't be a martingale. However:

In other words,  $\mathbb{E}(X_t | \mathcal{F}_s) = X_s, s \leq t$ .

Sometimes you will see written  $\mathbb{E}(X_t|X_s)$  instead of  $\mathbb{E}(X_t|\mathcal{F}_s)$ . Let  $W_t$  be a Brownian Motion,

•  $W_t$  is a martingale. Notice that, as  $W_0 = 0$  this implies that for any  $t \ge 0$ ,  $\mathbb{E}(W_t) = 0$ .

Now  $W_t^2 \ge 0$  and sometimes is strictly bigger, therefore, it can't be a martingale.

However:

• 
$$W_t^2 - t$$
 is a martingale.