Derivation of the Heat Equation

Consider a particle x, with position at time t denoted by $x(t)$.
x moves like a random walk, for example:

$$
x(t+\Delta t)=x(t)+\ell(t)
$$

The size of the step ℓ follows a density $\chi(\ell)$ which has mean 0 and standard deviation a. Then;

$$
\begin{gathered}
\int \chi(z) d z=1 \\
\int z \chi(z) d z=0 \\
\int z^{2} \chi(z) d z=a^{2} \Delta t
\end{gathered}
$$

What is the probability distribution of the location of x at time $t+\Delta t$ given that we know the density at time t ?

Let us call $\rho\left(x^{\prime}, t\right)$ and $\rho(x, t+\Delta t)$ both those densities.
Now, If the particle is at x^{\prime} at time t, the step that has to take to be at x at time $t+\Delta t$ is $x-x^{\prime}$.

Considering all the possible locations at time x^{\prime} :

$$
\rho(x, t+\Delta t)=\int_{-\infty}^{\infty} \rho\left(x^{\prime}, t\right) \chi\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \rho(x-z, t) \chi(z) d z
$$

If we now develop ρ around x and use Taylor, we can approximate:

$$
\rho(x-z, t)=\rho(x, t)-z \frac{\partial \rho}{\partial x}+\frac{1}{2} z^{2} \frac{\partial^{2} \rho}{\partial x^{2}}
$$

Which gives:

$$
\begin{aligned}
\rho(x, t+\Delta t) \approx & \int_{-\infty}^{\infty}\left(\rho(x, t)-z \frac{\partial \rho}{\partial x}+\frac{1}{2} z^{2} \frac{\partial^{2} \rho}{\partial x^{2}}\right) \chi(z) d z \\
= & \rho(x, t) \int \chi(z) d z-\frac{\partial \rho}{\partial x} \int z \chi(z) d z \\
& +\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}} \int z^{2} \chi(z) d z \\
= & \rho(x, t)+\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}} a^{2} \Delta t
\end{aligned}
$$

Rewriting:

$$
\rho(x, t+\Delta t)-\rho(x, t)=\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}} a^{2} \Delta t
$$

Dividing both sides by Δt the left hand side is approximately the derivative with respect to t :

$$
\frac{\partial \rho}{\partial t}=c \frac{\partial^{2} \rho}{\partial x^{2}}
$$

where $c=\frac{1}{2} a^{2}$.

What if we had developed to a higher order?

$$
\rho(x-z, t)=\rho(x, t)-z \frac{\partial \rho}{\partial x}+\frac{1}{2} z^{2} \frac{\partial^{2} \rho}{\partial x^{2}}-\frac{1}{3!} z^{3} \frac{\partial^{3} \rho}{\partial x^{3}}+\frac{1}{4!} z^{4} \frac{\partial^{4} \rho}{\partial x^{4}}
$$

The third term would vanish just like the first one did.
The fourth would end up giving a $3 a^{4}(\Delta t)^{2}$, which would vanish when we divide by Δt both sides.

