FM 5021

1) Consider the following yield curve (continuously compounded):

Maturity (Years)	Rate (annualized)
.5	1.5%
1	1.75%
1.25	2.0%
1.5	2.0%
1.75	2.1%
2.0	2.2%

a) What is the forward rate corresponding to the 6 months starting in 1.5 years?
b) You are long an FRA to pay 2.0% (continuously compounded) on $\$ 100$ for the same period as in part (a). What is the value of the contract right now?
c) What is the swap rate for a swap that starts today and pays semiannually for the next 46 -month periods? (so, the swap has a life of 2 years)
d) What is the swap rate for a swap that starts in 1 year and pays semiannually for the next 26 -month periods?
e) What is the the price of a floating coupon paying bond expiring in 2 years and paying coupons according to the given curve every 6 months?
f) Same as the previous question but now the bond pays a rate equal to the 6 -month rate plus 1%.
g) Same as part (e) but the bond expires in 1.75 years and 3 months ago the 6 -month rate was $.5 \%$.
h) Let $f(0, .5,1), f(0,1,1.5), f(0,1.5,2)$ be the corresponding forwards. Suppose that you structure a bond starting today, expiring in 2 years and paying different but FIXED coupons every 6 months. The coupons will be equal to $R(0, .5$ in 6 Z months and the corresponding forwards (computed today) for each of the other coupons. What is the price of this bond today?

